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A small, but growing, body of literature has emerged suggesting that the
influence of seasonal variation in investor mood may lead to systematic sea-
sonal effects in financial markets. For instance, Kamstra, Kramer, and Levi
(2003) find that holding-period stock returns are higher during the six-month
period when many individuals experience seasonal depression (the fall and
winter),1 varying conditionally across the seasons as much as 12% (annual-
ized), even after controlling for well-known seasonalities, such as the January
effect. Kamstra, Kramer, and Levi (forthcoming) show that average returns
to U.S. Treasury notes and bonds vary countercyclically relative to the sea-
sonal variation in equity returns, though with a smaller magnitude of vari-
ation.2 Kamstra, Kramer, and Levi (2003) conjecture that empirical
regularities such as these may arise due to seasonality in risk aversion pro-
duced by seasonality in mood, with seasonally depressed investors favoring
safe securities over risky securities during the periodswhen they are depressed.
The observed seasonal variation in the equity premium is comparable to the
magnitude of the mean equity premium itself, making it larger than other
established market regularities, including the January effect.
One of our primary findings is that allowing for seasonally varying investor

risk aversion, alone, is not capable of generating returns with properties that
match those of observed returns. Overall, we show in an equilibrium asset
pricing model framework that we are able to match the qualitative and quan-
titative features of observed risky and risk-free returns onlywhenwe allow for
both seasonally varying elasticity of intertemporal substitution (EIS) and
seasonally varying risk aversion.3 In our model, a representative agent’s pref-
erences vary across two seasons: in one season the agent is depressed and has
high risk aversion and low EIS and in the other he/she has low risk aversion
and high EIS.

1 Kamstra, Kramer, and Levi (2003) find that daily realized stock returns are significantly lower than average
during the fall and significantly higher than average during the winter, leading to higher-than-average holding-
period returns for investors who hold stock through the fall and winter.

2 Additional papers have explored the influence of seasonal depression on other facets of financialmarkets, finding
largely supportive results. Kamstra et al. (2013) investigate the flow of funds between safe and risky categories of
mutual funds and find, controlling for other factors, that there are net flows out of risky funds and into safe funds
in fall, and that the patterns reverse in winter, consistent with the seasonal depression hypothesis. Garrett,
Kamstra, and Kramer (2005) explore seasonally varying risk aversion in an equilibrium asset pricing model
that allows the price of risk to vary through the seasons, and they find evidence consistent with the seasonal
depression hypothesis. DeGennaro, Kamstra, andKramer (2008) study bid-ask spreads; Lo andWu (2008) and
Dolvin, Pyles, and Wu (2009) study analysts’ stock earnings forecasts; Dolvin and Pyles (2007) study the
underpricing of initial public stock offerings; and Pyles (2009) studies returns to real estate investment trusts.
All find evidence consistent with the influence of seasonal depression on markets. Dowling and Lucey (2008)
enlarge Kamstra, Kramer, and Levi’s (2003) original study to thirty-seven countries and find similar results.

3 Intuitively, allowing a time-varying subjective discount rate may generate similar effects on asset returns as time-
varying EIS. Indeed,Maurer (2012) finds several asset pricing puzzles are resolved in amodel with shocks to the
representative agent’s subjective discount rate, which suggests a potentially fruitful avenue for research that seeks
to explain asset return seasonality. In ourmodelwe employEpstein andZin (1989) utility, and soEIS is separated
from risk aversion and the discount rate. We show that time-varying risk aversion and EIS go a long way in
helping us understand seasonality in the returns to equity and the risk-free asset, leaving to future research the
potential benefit of allowing for a seasonally varying discount rate.
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The rationale for allowing seasonal variation in investor preferences arises
from a combined literature in psychology, medicine, and economics
(described in detail in Section 1), which links seasonality in mood with sea-
sonality in willingness to take risk and seasonality in consumption smoothing
(i.e., seasonality in EIS). First, many individuals experience severe depression
during the fall and winter seasons, when daylight is relatively diminished, and
the broader population experiences a milder degree of dampened mood
during these seasons.Depressed individuals aremore risk averse, implications
of which have been well explored in the finance literature.

A second implication of depression which to date has not been explored in
the finance literature is greater consumption impulsivity. That is, depression is
associated with a tendency to prefer consuming in the present, which natur-
ally results in less smooth consumption over time. In financial terms, this
amounts to reduced elasticity of intertemporal substitution. Thus, during
seasons when investors generally experience heightened depression, we
expect to observe both increased investor risk aversion and reduced investor
elasticity of intertemporal substitution. To the best of our knowledge, this
paper is the first to consider the influence of seasonal variation in EIS on
return seasonality.

The higher EIS and lower risk aversion associated with fall/winter depres-
sion may impact returns through the following channels. Reduced risk aver-
sion in a given season translates into reduced demand for risky assets, which
in turn results in lower prices for risky assets and higher prices for risk-free
assets, and hence higher expected returns for risky assets and lower expected
risk-free returns in that season. Furthermore, if an agent’s EIS is lower in a
particular season, then the agent is less willing to substitute today’s consump-
tion for future consumption. To induce the agent to invest more, the prices of
all assets must drop, whichmeans that expected asset returns must rise. To be
clear, the seasonal variation in EIS induces a change in the agent’s willingness
to substitute today’s consumption for tomorrow’s consumption, whereas the
effect of a change in risk aversion is to induce a change in the preference for
substituting between risky and risk-free assets. Thus, a change in EIS induces
the prices of all assets to move in the same direction, whereas a change in risk
aversion causes the prices of risky assets and risk-free assets to move in op-
posite directions. The challenge for us is to see whether allowing for seasonal
variation in agents’ risk aversion and EIS gives rise to the specific seasonal
asset return patterns documented by Kamstra, Kramer, and Levi (2003,
forthcoming) and others. We find we can meet that challenge.

Specifically, the model we develop is able to match the following empirical
regularities: (1) high risky asset returns during the season when the risk-free
returns are low and low risky asset returns during the season when the risk-
free returns are high (and hence a large change in the equity premium across
seasons) and (2) much greater seasonal variation in risky asset returns than in
risk-free asset returns. Whereas previous research on the links among
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daylight, depression, and markets focused on the role of risk aversion in
helping to explain asset returns, our work highlights the equal importance
of EIS in matching moments of returns data. Further, to match those
moments, the necessary degree of seasonal variation in both EIS and risk
aversion is within ranges that are broadly accepted as reasonable. And not-
ably, the amount of seasonal variation in EIS is very small relative to the
degree of seasonal change in risk aversion.A change inEIS by as little as 0.005
(seasonally varying from 1.5 to 1.495, for instance) can influence whether or
not statistical tests reject themodel’s ability to fit observed features of returns.
We highlight the importance of this small degree of variation in EIS required
tomatch observed returns: if insteadwe hold EIS constant across the seasons,
while allowing seasonally varying risk aversion, the model is unable to match
the signs and magnitudes of patterns in safe versus risky returns across the
seasons; the source of the seasonal variation in the risk premium is split evenly
between the variation in the equity and risk-free returns in that case, in sharp
contrast to the data. Similarly, the model cannot match the observed char-
acteristics of the data when EIS varies seasonally and risk aversion is
constant.
In principle, variation in individuals’ preferences over time and heterogen-

eity in preferences across individuals are not controversial notions (see, for
instance, Blundell, Browning, and Meghir 1994; Attanasio and Browning
1995; Atkeson and Ogaki 1996; Barsky et al. 1997; Guiso, Sapienza, and
Zingales 2013). Further, the consideration of seasonality in preference par-
ameters to capture seasonality in the macroeconomy, as in this paper, is not
unprecedented. For example, Chatterjee and Ravikumar (1992) explore the
impact of seasonal fluctuation in demand (with a Christmas peak) and in
production (with a winter slowdown) on the fit of macromodels, and Braun
and Evans (1995) consider the degree of changes in consumption preferences,
technology, and government purchases that are required to explain observed
seasonal patterns in output and investment.
This paper contributes most closely to the literature that explores time

variation in expected returns, arising because of time-varying preferences.
Miron (1986) explores the impact of seasonal preference shocks on consump-
tion, income, and asset returns in the context of a rational expectations ver-
sion of the life-cycle-permanent income model, finding that seasonality in
preference shocks can dramatically impact inference. Ferson and Harvey
(1992) endogenize a seasonally adjusting marginal rate of consumption
with a fixed habit parameter set in reference to past consumption from the
same season, facilitating a better match between the strong seasonals in con-
sumption with the relatively weak seasonals in returns. Ferson and Harvey
(1993) also consider seasonal taste shocks in linear consumption models
and, like Miron (1986) and Ferson and Harvey (1992), exploit consumption
data that are not seasonally adjusted. This use of seasonally unadjusted
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consumption data is in contrast to much of the consumption-based asset
pricing literature, for which the use of seasonally adjusted data is standard.

Several other models of time-varying risk preferences have also focused on
habit formation. Brandt and Wang (2003), for instance, consider a habit
persistence model and a law of motion for log relative risk aversion, whereby
risk aversion is shocked with news about both consumption growth and in-
flation. Bekaert, Grenadier, and Engstrom (2010) consider stochastic risk
aversion as a preference shock, motivated by a habit persistence framework.
There is also a significant body of literature that studies the relationship be-
tween time-varying risk and risk aversion. A strand of that literature focuses
on the empirical observation that equity premia seem to be higher in reces-
sions than in booms (see, for instance, Fama andFrench 1989). Campbell and
Cochrane (1999) build a representative agent model and show that when the
representative agent exhibits habit formation, his/her risk aversion is higher at
business-cycle troughs than it is at peaks. As a result, equity premia are higher
at business-cycle troughs than they are at peaks. Like us, Gordon and
St-Amour (2000) adopt a representative agent model that allows for time-
variation in preferences. Specifically, they capture “bear” and “bull” market
cyclicality by allowing stochastic switches between high and low risk aversion
states of the world. Piazzesi (2001) documents and discusses seasonal cross-
correlations between consumption growth and asset returns in the context of
Gabaix and Laibson’s (2002) paper on resolving the equity premium puzzle.

Although the focus of our primary analysis is on a calibration exercise
based on seasonally adjusted consumption data, we also perform the exercise
based on consumption data that have not been seasonally adjusted. This
allows us to consider whether consumption seasonality or preference season-
ality is better capable of explaining the data. Our results on this point are
unambiguous: consumption seasonality is not able to explain the seasonal
patterns in equity and risk-free asset returns, a result echoing the Ferson and
Harvey (1993) finding that consumption seasonality cannot explain the equity
premium puzzle. Specifically, we find that the seasonality evident in observed
consumption pushes returns in the model to follow a counterfactual cycle,
with both risky and risk-free returns becoming higher in the seasons when
they are observed to be lower (and vice versa) and with risky returns exhibit-
ing far less seasonal variation than they do in practice. Only when we allow
risk preferences to vary seasonally, with lower EIS and higher risk aversion
during periods when seasonal depression is most evident, is our model based
on seasonally unadjusted consumption data able to match the observed char-
acteristics of risky and risk-free returns.

1. Seasonal Depression

A sizable fraction of the population suffers from a seasonal form of clinical
depression known as seasonal affective disorder (SAD);most or, according to
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some recent research, perhaps all of the rest of the population experiences a
milder condition known as winter blues.4 Kasper et al. (1989) explain that the
distinction between SAD and the milder condition is not clear cut; they
recommend that both conditions be viewed along a continuum of seasonal
depression. Harmatz et al. (2000) demonstrate that depression varies across
the seasons significantly, even among people who do not suffer from SAD,
peaking in the fall/winter seasons, most markedly for women. Kramer and
Weber (2012) find a similar result, documenting that depression peaks in the
fall/winter seasons even among healthy individuals (regardless of gender).
Medical research has established that among the various possible environ-

mental factors that might cause seasonal depression, length of daylight ap-
pears to be the primary cause.5 Individuals who suffer from seasonal
depression typically begin experiencing depression in the early fall and recover
by late spring. The peak point of onset across individuals is around October
and the peak point of recovery is around April. We discuss this timing more
fully in footnote 8.
As depression is a psychological/medical condition of the sufferers, it can

manifest itself in the behavioral characteristics of the sufferers. Previous re-
search in psychology has established a link between depression and both
increased risk aversion and reduced consumption smoothing. We discuss
each set of research in turn.
Depression is associated with increased risk aversion, including risk of a

financial nature.6 With a substantial fraction of the population experiencing
seasonal depression in the fall and winter months, Kamstra, Kramer, and
Levi (2003) conjecture that the proportion of risk-averse investors is higher in
those seasons. Risk-averse investors, they argue, begin to shun risky stocks in
the fall as the length of day shortens, which has an immediate negative influ-
ence on stock prices, contributing to lower contemporaneous returns and
higher expected future returns. As the amount of daylight rebounds through
the winter months, investors begin to recover from their depression and
become more willing to hold risky assets, which, Kamstra, Kramer, and
Levi (2003) posit, has a positive influence on stock prices, contributing to
higher contemporaneous returns and lower expected future returns.

4 As Mersch (2001) and Thompson, Thompson, and Smith (2004) note, specific estimates of the prevalence of
seasonal depression vary considerably, depending on the diagnostic criteria and sample selection methods em-
ployed by the researchers. The nature, incidence, and cause of SADare discussed in awide range of articles in the
medical and psychology literatures surveyed by Lee et al. (1998).

5 See, for instance, Molin et al. (1996) and Young et al. (1997).

6 Depressed individuals have been shown to be significantly more risk averse than nondepressed individuals. See
Zuckerman (1984), Carton et al. (1995), andKramer andWeber (2012), among others. Further, certain standard
psychological measures of risk aversion have been shown to capture financial risk aversion. See, for instance,
Harlow and Brown (1990) and Horvath and Zuckerman (1993). See Kamstra, Kramer, and Levi (2003) and
Kamstra, Kramer, and Levi (forthcoming) for more details on these links. Additionally, Kramer and Weber
(2012) study hundreds of individuals across the seasons, including individuals who suffer from seasonal depres-
sion and individuals who do not. They find that the depressed group is more averse to financial risk than the
nondepressed group in all seasons, most markedly so in fall/winter.
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Research in psychology has also established that depressed individuals tend
to exhibit greater preference to consume in the present, which manifests in a
condition termed “compulsive buying disorder.” Lejoyeux et al. (1997) and
Lejoyeux, Haberman, and Adès (1999) find that the incidence of compulsive
buying among depressed individuals is about 40%, compared to an incidence
in the overall U.S. population around 6% (see Koran et al. 2006). The most
common theory of compulsive buying is that low serotonin levels found in
depression, including SAD, are associated with increased rates of impulsivity.
Lejoyeux et al. (1997) find that treatment with antidepressants, including
serotonin reuptake inhibitors (commonly known as SSRIs), can help to de-
crease the frequency and severity of uncontrolled buying. Thus, it may be that
some individuals who suffer from compulsive buying disorder use the con-
sumption experience as a way to self-medicate their depression. Compulsive
buying disorder is characterized by a lack of impulse control over making
purchases and hence smoothing consumption over time, or stated in terms
more familiar to financial economists, low elasticity of intertemporal substi-
tution. Berns, Laibson, and Loewenstein (2007) find that EIS is impacted by
emotion and affect. Recall that SAD is itself a condition associated with
seasonal changes in affect, specifically depression. Thus, just as Kamstra,
Kramer, and Levi (2003) argue that seasonality in depression implies season-
ality in risk aversion, so we hypothesize that seasonality in depression may
alsomanifest itself in seasonally varyingEIS, with lowEIS in the seasonwhen
risk aversion is high and vice versa.

2. Asset Prices and Returns

In this section we develop the theoretical framework for our calibration ex-
ercise.We assume a representative agent framework. Given the psychological
and behavioral evidence reviewed earlier, it may seem most natural to con-
sider a model with heterogeneous agents, some of whom suffer from seasonal
depression and otherswho do not. In such amodel, returnswould vary across
seasons such that all assets are held at all times, in the spirit of the CAPM.
However, when the market is complete, the aggregation theory of
Constantinides (1982) shows that a representative agent model applies with-
out loss of generality as far as equilibrium asset prices are concerned. Thus,
building on Shefrin’s (2008, chapter 14) point that the risk preferences of
heterogeneous investors can be captured through a representative agent
model, we assume that the representative agent has seasonally varying pref-
erences. In addition, we assume that the representative agent has recursive
utility as in Epstein and Zin (1989).7

7 Note that in a heterogeneous agent economy in which agents have recursive utility, the aggregate representative
agent may not have recursive utility. Our assumption that the representative agent has recursive seasonally
varying utility is for its analytical convenience.
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2.1 Recursive utility with seasonally varying preferences
We assume that the representative agent has recursive preferences as de-
veloped by Epstein and Zin (1989), modified to allow for seasonally varying
risk aversion and elasticity of intertemporal substitution,

Ut ¼ cð1#!tÞ="t
t +#ðEtU

1#!t
t+1 Þ1="t

h i"t=ð1#!tÞ
ð1Þ

where "t ¼ ð1# !tÞ=ð1# 1= tÞ. Here, !t is risk aversion;  t is EIS; and ct is
consumption. Following Bansal and Yaron (2004) and others, we assume
that t > 1, implying that "t < 0. As discussed in Section 1, previous research
in psychology has suggested connections between depression and greater risk
aversion and between depression and lower EIS. Thus, during the seasons in
which an individual suffers from seasonal depression, we expect that his/her
EIS,  t, will be lower, consistent with his/her decreased willingness to substi-
tute his/her consumption today for consumption tomorrow. Assuming
!t > 1, the lower  t is associated with a lower "t. At the same time, the
seasonal depression is associated with higher risk aversion, !t. Overall, the
effect of seasonal depression on this individual is higher !t and lower "t.
Conversely, in seasons in which the individual is not depressed, his/her be-
havior can be characterized by lower !t and higher "t.When "t ¼ 1 and !t is a
constant, the result is the standard intertemporally additive expected utility.
With this model, the utility maximization problem of the representative

agent is

JtðWt, xt; !t, "tÞ ¼ max
ct, $t

cð1#!tÞ="t
t +#ðEtJ

1#!t
t+1 Þ1="t

h i"t=ð1#!tÞ
,

subject to the constraint

Wt+1 ¼ ðWt # ctÞ$tð1+Rt+1Þ,

whereWt is the wealth of the agent; xt is the vector of state variables; $t is the
vector of portfolio weights; andRt is the vector of asset returns (consisting of
the risky market return, RM, t, and the risk-free return, Rf , t).
We assume that the agent’s preferences oscillate across periods. In one

period the agent has low risk aversion and high EIS, in the next he/she has
high risk aversion and low EIS, and so on. We should emphasize that the
representative agent knows his/her preferences will change over time and all
of his/her decisions take that fact into account. That is, the representative
agent is not myopic.
By an argument similar to that of Epstein and Zin (1989), it can be shown

(see Equation (18) in Appendix A) that the price Pj, t of asset j at time t is

Pj, t ¼ #"twtðxtÞ1#"tEt g#!t
t+1 wt+1 xt+1ð Þ+1ð Þ

"t+1ð1#!tÞ
ð1#!t+1Þ

#1
Pj, t+1+dj, t+1
! "# $

, ð2Þ

Review of Asset Pricing Studies / v 4 n 1 2014

46

 by guest on M
ay 8, 2014

http://raps.oxfordjournals.org/
D

ow
nloaded from

 

http://raps.oxfordjournals.org/


where gt+1 ¼ ct+1
ct

(the growth in consumption); dj, t is the dividend on asset j at

time t; and wtðxtÞ is the price-dividend ratio of the market portfolio at time t.
We denote the price of the riskymarket portfolio asPM, t, and the price of the
risk-free asset as Bt.

Equation (2) implies (see Equation (15) in Appendix A) that the price-
dividend ratio of the market portfolio satisfies

wtðxtÞ ¼ # Et gt+1ð1+wt+1ðxt+1ÞÞ
"t+1

ð1#!t+1Þ
% &1#!t

# $' (1="t

: ð3Þ

Weare interested in the way the prices and returns of the risky and risk-free
assets behave across seasons. Consider first the risky return. The return on the
market portfolio is related to the price-dividend ratio through

RM, t+1 ¼
PM, t+1+dM, t+1

PM, t
¼ ðwðxt+1Þ+1Þgt+1

wðxtÞ
: ð4Þ

Taking the expectation yields

Et½RM, t+1& ¼ Et
PM, t+1+dM, t+1

PM, t

# $
¼ Et½ðwðxt+1Þ+1Þgt+1&

wðxtÞ
: ð5Þ

Recall that the price-dividend ratio depends on " and g, which vary over time;
thus, the price-dividend ratio itself varies over time. Therefore, it is evident
from Equation (5) that as the representative agent’s preferences move back
and forth between the seasons, the expected market return moves
accordingly.

Next, we consider the price of the one-period risk-free asset. Equation (2)
implies that the price of the one-period risk-free asset satisfies

BtðxtÞ ¼ #"twtðxtÞ1#"tEt g#!t
t+1 ðwt+1ðxt+1Þ+1Þ

"t+1ð1#!tÞ
ð1#!t+1Þ

#1
# $

: ð6Þ

Thus, as the representative agent’s preferences move back and forth between
the seasons, the bond price also moves accordingly.

The intuition behind the relationship between asset prices and EIS is
straightforward. Ceteris paribus, when the agent is less willing to substitute
between today’s and tomorrow’s consumption, he/she will consume more
today and hence invest less, which implies the demand for all assets is
lower and hence the returns on all assets higher.

The intuition of how the asset returns and the price-dividend ratio move as
risk aversion varies is also straightforward. It works through two channels.
The first one is the asset allocation channel, which is temporal in nature. As
risk aversion increases, the agent shifts her investment away from the risky
market portfolio toward the riskless asset. Thus, during periods in which risk
aversion is high, the price of the risky assetPM, t is lower and the risky return is
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higher than in low risk aversion periods. Because PM, t is equal to the price-
dividend ratio multiplied by dividend, the price-dividend ratio is smaller in
high risk aversion periods than in low risk aversion periods. Consequently,
the magnitude of the price-dividend ratio varies countercyclically across per-
iods relative to the cycles in risk aversion, and the risky asset return varies
procyclically across periods relative to the cycles in risk aversion. The effect of
time-varying risk aversion on the risk-free asset is exactly the opposite. The
risk-free asset return varies countercyclically relative to risk aversion.
The second channel is the intertemporal substitution channel. As risk aver-

sion increases, the certainty equivalent of future consumptions is lower. To
establish this lower certainty equivalent level as the equilibrium level, it must
be that the price of future consumption is higher relative to the price of
today’s consumption so that the representative agent does not want to sub-
stitute today’s consumption for more future consumption. Because the risk-
free rate is part of the price of future consumption (i.e., it is equal to risk
neutral probability divided by 1+Rf , t), the change in risk aversion will also
have an effect similar to that of EIS on the risk-free rate through its inter-
temporal substitution effect.
It is worth emphasizing that, although a change in risk aversion has its

effect through two different channels, its effect through the asset allocation
channel is in contrast to the effect of EIS. An increase in risk aversion,
through the asset allocation channel, leads to a lower price for the risky
asset but a higher price for the risk-free asset, whereas a decrease in inter-
temporal substitution, either through a decrease inEIS or through an increase
in risk aversion via the second channel outlined above, leads to lower prices of
all assets.

2.2 Incorporating a Markov process for consumption growth
We assume that the agent cycles between two seasons with a different set
of preferences in each season. We further assume that each of the periods
(seasons) is six months in length.8 During one six-month period (season)
every year, the set of preference parameters is f!FW , "FW g (for fall/winter),
and in the other six-month season of every year, the set is f!SS, "SSg

8 The periodicity we adopt in modeling the influence of seasonal depression on risk aversion and EIS is based on
the clinical studies by Young et al. (1997) and Lam (1998), who document the timing of the clinical onset of and
recovery from seasonal depression symptoms among North Americans known to be affected. They find that
most people who suffer from seasonal depression experience their symptoms for about sixmonths during the fall
and winter seasons, with Lam (1998) finding the peak in onset during October and the peak in recovery during
April (he reports monthly statistics) and Young et al. (1997) finding the peak in onset in the second week of
October. (Young et al. 1997 report weekly data but do not report recovery statistics.) Thus, for the sake of
parsimony, we opted to develop a two-season model based on the representative agent suffering from seasonal
depression during the fall and winter (beginning in October, consistent with the timing observed by these clinical
researchers) and not suffering from seasonal depression for the other sixmonths of the year (beginning in April).
(In a previous version of this paper, we performed robustness checks for which the six-month seasons begin in
September and March, or begin in November andMay, and in both cases we found results similar to those we
report in this paper.) In principle, onemight consider developing instead amore complexmodelwith four distinct
seasons: fall, winter, spring, and summer.

Review of Asset Pricing Studies / v 4 n 1 2014

48

 by guest on M
ay 8, 2014

http://raps.oxfordjournals.org/
D

ow
nloaded from

 

http://raps.oxfordjournals.org/


(for spring/summer). The fall/winter parameter set f!FW , "FW g corresponds
to the time period in which the agent suffers from seasonal depression and
consequently exhibits high risk aversion and low EIS (and thus low "). In the
other six-month period of every year, spring/summer, the agent exhibits low
risk aversion and high EIS. To be clear, risk aversion and EIS vary determin-
istically as the seasons change. The representative agent is not myopic and
treats the seasonal variation in preferences as known.

In contrast to the deterministic nature of the variation of risk aversion and
EIS over time, we assume consumption growth varies according to a two-
stateMarkov process akin to theMehra and Prescott (1985) setting. Now the
price dividend ratio,wk

i , is indexed by i ¼ 1, 2 for (consumption growth) state
and by k ¼ FW , SS for the high risk aversion and inelastic consumption
(fall/winter) and low risk aversion and elastic consumption (spring/
summer) seasons in the model. Equation (3) then yields (see Equations (16)
and (17) in Appendix A) the following system of equations for price-dividend
ratios:

wFW
i

! ""FW¼ #"FW
X2

j¼1

%ði, jÞg1#!FW
j 1+wSS

j

% &"SS ð1#!FW Þ
ð1#!SS Þ , ð7Þ

ðwSS
i Þ"SS ¼ #"SS

X2

j¼1

%ði, jÞg1#!SS
j 1+wFW

j

% &"FW ð1#!SS Þ
ð1#!FW Þ

: ð8Þ

Here,wk
i is the price-dividend ratiowhen the preference parameters are !k and

"k; the current state of consumption growth is i; and % is the Markov state-
transition probability matrix.

In the case of a two-state Markov world and two sets of preference par-
ameters, it follows from Equation (6) (see Equations (20) and (21) in
Appendix A) that the one-period bond price satisfies the following system
of equations:

BFW
i ¼ #"FW ðwFW

i Þ1#"FW
X2

j¼1

%ði, jÞg#!FW
j 1+wSS

j

% &"SS ð1#!FW Þ
ð1#!SS Þ

#1
, ð9Þ

BSS
i ¼ #"SS ðwSS

i Þ1#"SS
X2

j¼1

%ði, jÞg#!SS
j 1+wFW

j

% &"FW ð1#!SS Þ
ð1#!FW Þ #1

: ð10Þ

We solve this system of equations for equilibrium price-dividend ratios, wk
i ,

and bond prices, Bk
i . Then we integrate over growth states to determine the

expected risky and risk-free rates of returns in the two seasons. Note that we
occasionally suppress the qualifier “expected” when referring to the expected
returns on the risky and risk-free assets.
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2.3 Sensitivity of returns to preference parameters
One of our novel findings (to be shown in detail in later sections) is that to
match observed seasonal characteristics of risky and risk-free returns, the
necessary degree of seasonal variation in EIS is very small relative to that
required in risk aversion. To demonstrate the relatively higher sensitivity of
returns to changes in EIS, a natural starting point is an analytic approach. In
Appendix B we present an analytic solution to evaluate the sensitivity of
returns and the risk premium to changes in EIS, under the strong simplifying
assumptions of iid consumption growth and nonseasonally varying prefer-
ences. However, for the more interesting general case with non-iid consump-
tion growth and seasonally varying preferences, the solution is analytically
intractable. Thus, we solve numerically the sensitivity of returns to seasonal
changes in EIS. We present the results in Figure 1. As we now explain, the
derivative of returnswith respect to a change inEIS is represented by the slope
of the lines shown in each of the Figure 1 panels.
Consider panelAof Figure 1. The vertical axis depicts seasonal variation in

returns as the difference between fall/winter returns and spring/summer re-
turns. The horizontal axis depicts the magnitude of seasonal variation in EIS
(! ¼  FW #  SS). The thin solid line represents the seasonal change in the
risky return for different values of! , and the thick solid line represents the
seasonal change in the risk-free return for different values of! . The dashed
line represents the difference between the thin solid and thick solid lines; that
is, it represents the seasonal change in the equity premium aswe vary! . For
all panels, risk aversion in the spring/summer season (!SS) equals 1.75 and
risk aversion in the fall/winter season (!FW ) equals 15.75. In panelAonly, EIS
in the spring/summer season ( SS) equals 2. By moving along the horizontal
axis, we can consider the impact on returns arising from different seasonal
changes in EIS. Starting at the far right of panel A,! equals zero, and hence
EIS in the fall/winter is identically equal to EIS in the spring/summer. In that
case, we see from the plot that the seasonal change in the equity return (the
thin solid line) is about 2, and the seasonal change in the risk-free rate (the
thick solid line) is about #3, both of which are at odds with the observed
seasonal variation in risky and risk-free returns. (We provide more details on
the observed seasonal variation in returns in the next section.) The seasonal
variation in the equity premium at that point in panel A is about 5% (the
dotted line). As we move to the left in this plot, we can evaluate the impact of
allowing EIS to be lower in the fall/winter than in the spring/summer. Note
that for values of! around#0.01, the seasonal variation in the risky return,
the risk-free return, and the equity premium all roughly match observed
values. Specifically, the seasonal change in the risky return is around 5%,
the seasonal change in the risk-free return is close to or just below zero, and
the seasonal change in the risk premium is around 5%. Stated differently, the
parameters allow for the best match with observed returns near the point at
which the thin solid line crosses the dashed line. This also applies to panels B,
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C, andD, where we consider values of EIS in the spring/summer season ( SS)
of 3, 4, and 6, respectively. In panel B, we find the bestmatch to observed data
when the degree of seasonal change in EIS is around #0.02; in panel C this
occurs around#0.04; and in panelD this occurs around#0.08.Notice that in
all cases, the required degree of seasonal change in EIS is very small, ranging
from about#0.01 to#0.08 (depending on the assumed spring/summer value
of EIS) compared with the magnitude of the required degree of seasonal
change in risk aversion (15 in this particular example). In untabulated robust-
ness checks, we explored a broad range of values of risk aversion and EIS
preferences across the seasons, and we uniformly found that to match the
seasonal characteristics of observed risky and risk-free returns, the necessary
amount of seasonal variation in EIS is very small compared with that in risk
aversion, uniformly near the range shown in this example.

∆ ϕ
Panel A: γSS = 1.75 γFW = 15.75, ψSS = 2

∆ ϕ
Panel B: γSS = 1.75 γFW = 15.75, ψSS = 3

∆ ϕ
Panel C: γSS = 1.75 γFW = 15.75, ψSS = 4

∆ ϕ
Panel D: γSS = 1.75 γFW = 15.75, ψSS = 6

Figure 1
Sensitivity of seasonal changes in returns to EIS
In each panel, the vertical axis depicts seasonal changes in returns as the difference between fall/winter returns
and spring/summer returns. The horizontal axis depicts the magnitude of seasonal variation in EIS
(! ¼  FW #  SS). The dashed line represents the seasonal change in the equity premium; the thin solid
line represents the seasonal change in the risky return; and the thick solid line represents the seasonal change
in the risk-free return. In all cases, risk aversion in the spring/summer season (!SS) equals 1.75 and risk aversion
in the fall/winter season (!FW ) equals 15.75. EIS in the spring/summer season ( SS) equals 2, 3, 4, and 6 in
panels A through D, respectively.
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3. Return Data

We now provide stylized facts on return seasonalities. We perform all of
our analysis on a semiannual periodicity so that a semiannual risk-free
rate, set at the beginning of the semiannual period, is the appropriate
quantity to calibrate to the model’s risk-free rate. Although a shorter-term
instrument, such as the one-month Treasury-bill could be rolled over to
produce a six-month return (and indeed we consider such a return for
robustness and find qualitatively identical results), this would not be a true
six-month risk-free rate because the one-month bill varies unpredictably
month-to-month over the semiannual period. Unfortunately, six-month
Treasury-bill rates are not available until 1959; thus, our calibration
exercise relies primarily on data from 1959 and onward. For comparison,
later in the paper we also discuss the features of data available beginning as
early as 1926.
Our primary analysis is based on the 1959–2012 period. To get an overview

of equity and Treasury market seasonalities, we present Table 1, which con-
tains average inflation-deflated (real) six-month returns for equities (based on
the CRSP value-weightedU.S. total-market index including dividends), aver-
age real six-month returns for risk-free securities (U.S. Treasury-bills), and
equity premium values over the 1959–2012 period.
We calculate seasonal rates of return using the CRSP value-weighted re-

turns, including dividends for the risky asset and the CRSP Fama Treasury-
Bill Term Structure Files for the risk-free asset. There are two aspects related
to our choice of series that warrant discussion. First, because these are nom-
inal rates of return and our model describes real rates of return, we must
deflate these return data. The use of real returns is consistent with related
studies, including Mehra and Prescott (1985). We deflate the nominal return
series followingMehra andPrescott (1985) using a deflator series produced by
dividing real consumption of nondurables and services by the nominal con-
sumption of nondurables and services.9 Second, the convention in the asset-
pricing literature when performing calibration exercises is to consider value-
weighted returns, as they better capture total returns to the typical investor.
Thus, we employ value-weighted returns.

9 The Treasury-bill series are deflated using the predicted inflation rate, where we use an ARMA(1,1) time-series
model to form our predicted inflation series.We use predicted inflation because the Treasury-bill rate is set using
information available only at the beginning of the period; realized inflation is known only after the Treasury-bill
matures. This regression, estimated on semiannual data, has an R2 of 71% and removes evidence of autocor-
relation to five lags (2.5 years). Coefficient estimates (with standard errors in parentheses) are as follows.
Intercept: 0.0029 (0.0013), AR(1): 0.86 (0.058), MA(1): -0.097 (0.120). The realized inflation rate is used to
deflate the equity return, because the realized inflation rate is known when the equity return is realized. The
consumption data we use are sourced from the U.S. Department of Commerce, Bureau of Economic Analysis,
via the Federal Reserve Bank of St. Louis FRED database. These data include personal consumption expend-
itures on services and nondurable goods, real and nominal, series IDs PCES, PCENDC96, PCEND, and
PCESC96.
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The statistics we present are based on splitting the year into October–
March and April–September six-month seasons. This split coincides with
the clinical observation that October is the approximate point at which
there is a peak in SAD diagnoses and April is the approximate peak point
of recovery from SAD, as reported in footnote 8 above. In a previous version
of this paper we performed a robustness check based on splitting the year into
September–February and March–August halves and into November–April
and May–October halves and found similar results.

The first noteworthy feature of Table 1 is that the average equity return
is much higher in the fall/winter season (October–March) than in the spring/
summer season (April–September), with the approximate 5% seasonal dif-
ference being statistically significant at the 5% level, two-sided, based on
MacKinnon and White (1985) heteroscedasticity-consistent standard errors.

The second noteworthy feature of Table 1 pertains to the average
Treasury-bill returns. We consider very short maturity (six-month)
Treasury securities, and we find no strong seasonal return pattern at this
maturity. We should emphasize that Kamstra, Kramer, and Levi (forthcom-
ing) find an economically large and statistically significant seasonal pattern in
longer-maturity Treasury securities (five-, seven-, ten-, and twenty-year
Treasury notes/bonds). Specifically, they find longer-term Treasury returns
are significantly lower than average during the fall/winter season when risky
equity returns are higher than average, and vice versa for the spring/summer.
They find the effect trails off monotonically asmaturity shortens, presumably
because monetary policy aims explicitly to remove seasonality in the money
supply and is believed to have a largemoderating influence on the shorter end

Table 1

Average realized U.S. real rates of return, 1959–2012

Period Six-month VW
equity return (%)

Six-month risk-free
return based on
holding six-month

maturity security (%)

Six-month risk-free
return based on rolling
over thirty-day maturity

security (%)

April–September 1.149 0.793 0.562
October–March 6.284 0.772 0.485
Seasonal change 5.134 #0.021 #0.077
Standard error 2.583 0.206 0.191
of seasonal change

We report the average real six-month equity and risk-free returns for the 1959–2012 sample period. The
six-month periods are spring/summer (April–September) and fall/winter (October–March). We consider
two distinct risk-free returns series: one based on the return to holding a six-month Treasury-bill, and another
based holding a thirty-day Treasury-bill rolled over each month to form a six-month semiannual return.
The equity return data are CRSP U.S. total market (NYSE, NASDAQ, and AMEX) value-weighted re-
turns, including dividends, deflated using realized inflation as described in footnote 9. The Treasury data
are from the CRSP Fama Treasury-Bill Term Structure Files, deflated using predicted inflation as
described in footnote 9. For each series, we consider average returns and the difference in average returns
across the two seasons. Heteroscedasticity-consistent standard errors are calculated based on MacKinnon
and White (1985).
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of the term structure.10 The moments in Table 1 show little or no seasonal
variation in very short maturity Treasury security returns (consistent with the
Federal Reserve’s monetary policy objectives). The reader should keep in
mind, however, the more general finding of significant seasonal variation in
returns to Treasury notes and bonds, with significant countercyclical seasonal
variation in those securities’ returns relative to that found in equity returns:
in general there is roughly a 1% seasonal difference in longer-maturity
Treasury returns versus roughly a 5% seasonal difference in equity returns
(see Kamstra, Kramer, and Levi forthcoming).11

4. Using the Model to Match Returns

Our next task is to match model-predicted expected returns with observed
return patterns. To do this, we must parameterize the consumption growth
process of ourmodel and determine the seasonal patterns of expected returns.
In this section we explore two different calibrations to model consumption
growth, both of which are based on seasonally adjusted consumption data
commonly employed in the asset pricing literature.With both calibrations we
can match the moments of the observed data when we allow for seasonal
variation in EIS and risk aversion. Later, in Section 5, we base our calibration
exercise on seasonally unadjusted consumption data, similarly finding that
the model generates returns that match observed risky and risk-free returns
only if we allow both EIS and risk aversion to vary seasonally.

4.1 Consumption data
Our first consumption growth calibration exercise is based on seasonally ad-
justed consumption data from January 1959 to December 2012.12We restrict
our attention to data starting in 1959, due to unavailability of the risk-free six-
month Treasury-bill return series and monthly consumption data prior to
that year. The consumption data we employ for this exercise are real nondur-
ables and services consumption (from the Bureau of Economic Analysis).We
find positively autocorrelated consumption growth, and assuming a two-state

10 Gibson (1970, 442), referring to Treasury-bill rates, notes that an “aim of the Federal Reserve System is to
accommodate seasonal swings in the financial needs of trade, and the System tries to do this by removing
seasonal fluctuations from interest rates.” Fama (2013, 198) is skeptical about the influence of such efforts,
noting that “Fed actions with respect to its target rate have little effect on long-term interest rates, and there is
substantial uncertainty about the extent of Fed control of short-term rates.”

11 One interpretation of the joint findings (based on our Table 1 and on the results of Kamstra, Kramer, and Levi
[forthcoming]) is that equity returns exhibit a strong seasonal cycle and Treasury returns exhibit a smaller
seasonal pattern that is countercyclical relative to the seasonal pattern in equity returns. Another interpretation
is that equity returns exhibit a strong seasonal cycle, whereas the very short end of the Treasury security market
does not exhibit a strong cycle (unlike the rest of theTreasurymaturity spectrum), perhaps due to the influence of
theFederalReserve.Note that either interpretation is at oddswith standard asset pricingmodels, which imply no
seasonal variation in either set of returns. In our calibration exercises reported below, we attempt to match the
return characteristics for the full sample, using the average return values shown in Table 1.

12 Ending the sample in 2007 to avoid the influence of the financial crisis leads to qualitatively identical results.
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Markov process for consumption growth, we derive %ði, iÞ ¼ 0:638. The
mean (annualized) real growth rate in consumptionwe find is 3.11%, together
with a standard deviation of 1.71%. The second calibration of seasonally
adjusted consumption growth is the classic parameterization of Mehra and
Prescott (1985). This calibration exhibits negative autocorrelation of con-
sumption growth (%ði, iÞ ¼ 0:43), mean consumption growth equal to
1.80%, and standard deviation of growth equal to 3.60%. We also incorp-
orate the use of levered equity (to help us match the unconditional level of
returns) by following Campbell (1986), Abel (1999), and Lettau, Ludvigson,
and Wachter (2008) and employing a scaling parameter (denoted & by Abel
1999 and others). This parameter scales up the volatility of growth to reflect
the effect of leverage. Unleveraged assets, such as those found in the Lucas
(1978) fruit-tree model, have & ¼ 1, with values greater than one reflecting
leveraged assets. The payoff in period t on the canonical asset is proportional
to an observable variable, typically consumption, raised to the power &.
Lettau, Ludvigson, and Wachter (2008) set & ¼ 4:5, which we also adopt.

4.2 Grid for preference parameters
We determine the expected returns to holding risk-free and risky assets
implied by the characteristics of consumption by searching over a grid of
values of the risk aversion and EIS preference parameters. The grid we
search over is informed by previous research. The parameter of relative risk
aversion, g, has been argued by Lettau, Ludvigson, andWachter (2008) to be
as high as possibly 30 (to match observed mean equity premia, dividend
yields, and risk-free rates on postwar data). Small, negative values of the
EIS parameter (denoted  ) have been reported by authors, including Hall
(1988), but for the most part the consensus in the literature is that the par-
ameter is positive and, according to researchers, including Lettau, Ludvigson,
and Wachter (2008), Bansal and Yaron (2004), and Vissing-Jorgensen and
Attanasio (2003), greater than 1. Vissing-Jorgensen and Attanasio (2003)
suggest values close to 1.5 but report estimates as high as 17.6 (see their
Table I).

Because we explore seasonally varying risk aversion and EIS in this cali-
bration exercise, each spring/summer (!SS,  SS) pair has a corresponding
fall/winter (!FW ,  FW ) pair with !FW 6¼ !SS and  FW 6¼  SS. (We also con-
sider varying only one of  or g at a time.) In our full grid search, we explore
values of !SS as low as 1.25 and as high as 30. We set !FW ¼ !SS+!! , with
!! > 0 and equal to as little as 0.25 and asmuch as 30.We consider values of
 between 1 and 6.13 We set  FW ¼  SS+! , with ! < 0 and equal to as

13 In a previous version of this paper we considered values of  < 1 as well. Doing so allows slightly better fit to
equity and bond returns for the case of constant  but has little or no impact on fit when  is allowed to vary
seasonally. Here, we restrict our attention to values of  > 1 because of the growing consensus in the literature.
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little as #0.0001 and as much as #0.1. In all cases, we set # no greater than
0.9849 for the semiannual frequency.14,15

4.3 Calibration results
We demonstrate now that in a model with seasonally varying risk aversion
and EIS, we can closely match the observed magnitudes and signs of changes
in returns in our semiannual stock and bond data.We also show, in contrast,
that if we allow only risk aversion to vary seasonally (with EIS held constant),
we are able to replicate the signs of seasonal changes in risky versus risk-free
asset returns, but we are not able to closely match the magnitudes. For the
interested reader, we present results in Appendix C showing that if we allow
only EIS to vary seasonally (with risk aversion held constant), we can match
neither the signs nor themagnitudes of seasonal changes in risky and risk-free
asset returns. Note that returns emerging from the calibration exercises that
we report in the tables below are all expected returns, produced by solving the
system of Equations (7)–(10) for the equilibrium values of wk

i and Bk
i and

integrating over growth states.

4.3.1 Calibrating to the Mehra and Prescott consumption growth data.
Consider Table 2, in which we present results based on the Mehra and
Prescott consumption growth parameters. Panel A contains the stylized fea-
tures of risky and risk-free returns that we attempt to match: much higher
risky returns in fall/winter than in spring/summer, with a seasonal difference
of about 5%, and slightly lower (or constant) risk-free returns in fall/winter
versus spring/summer, with a seasonal difference of a few basis points.
Panel B contains calibration results for cases in which we allow both EIS

and risk aversion to vary seasonally. Values for g and  are in the first two
columns, with results clustered in groups of two, the first corresponding to the
April–September period (associated with low risk aversion and high EIS) and
the second theOctober–March period (associatedwith high risk aversion and
low EIS).We report the equity and risk-free rates of return produced by the a
representative set of best-performing g and  combinations, together with a
test that the data sample moments reported in panel A are consistent with
the model.16 In the top set of cells in panel B, g varies from 1.5 in the

14 We set the semiannual rate of time preference of 0.9849 to match an annual rate of 0.97, based on the quarterly
value of 0.9925 from Lettau, Ludvigson, and Wachter (2008).

15 There are ð!,  Þ pairs for which a simultaneous setting of # ¼ 0:9849 can produce negative returns; when this
occurs we lower # in steps by roughly 0.01 and restart. This is continued until returns are positive. Virtually all of
the parameterizations have a # no less than 0.9746.

16 The model specification test has us comparing the model-implied return patterns with the return patterns
observed in the actual data, following Gregory and Smith (1991) and Cogley and Nason (1995), among
others. The details of this method are as follows. Using the g and  values from the table, the consumption
growth parameters reported in the paper, and Equations (7)–(10), we simulate 10,000 independent outcomes of
108 periods each (to match the 54 year semiannual actual data period to which we calibrate our model). The
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April–September season to 7.5 in the October–March season and  varies
from 1.5 in the April–September season to 1.495 in the October–March
season. The magnitudes of equity returns in each of the spring/summer and
fall/winter seasons, 2.3% and 7.8%, respectively, and the difference of about

Table 2

Calibration results: Using Mehra and Prescott consumption growth parameters (six-month rates of return)

Panel A: Stylized facts we attempt to match

Period Equity return (%) Risk-free return (%)

April–September 1.149 0.793
October–March 6.284 0.772
Seasonal change 5.134 #0.021

Panel B: Calibration results for seasonally varying risk aversion and seasonally varying EIS

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.5 1.5 April–September 2.3 0.58
7.5 1.495 October–March 7.8 0.38 0.73

2.25 1.5 April–September 3.1 0.53
8.25 1.495 October–March 8.4 0.42 0.28

2 1.5 April–September 2.4 0.14
8 1.495 October–March 7.9 0.09 0.38

1.5 4 April–September 2.6 0.94
8.5 3.95 October–March 7.9 0.21 0.39

1.5 5.5 April–September 2.6 1.00
8.5 5.4 October–March 8.0 0.45 0.94

Panel C: Calibration results for seasonally varying risk aversion and constant EIS

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.5 1.25 April–September 7.5 5.63
7.5 1.25 October–March 8.1 0.49 <0.001

2.25 4 April–September 6.0 3.46
9.25 4 October–March 8.4 0.29 <0.001

2.5 1.5 April–September 7.7 4.69
8.5 1.5 October–March 8.6 0.45 <0.001

3 5.5 April–September 6.4 3.03
10 5.5 October–March 8.9 0.44 <0.001

The data in panel A are from Table 1. In panel B we summarize results for which we allow both seasonally
varying risk aversion and seasonally varying EIS, and in panel C we summarize results for which only risk
aversion varies seasonally.We calibrate to consumption growth parameters from theMehra and Prescott (1985)
sample period: negative autocorrelation of consumption growth (% ¼ 0:43), mean consumption growth is equal
to 1.80%, and standard deviation of growth is equal to 3.60%. The consumption data are seasonally adjusted.
Footnote 16 describes the specification test.

Markov transition probabilities introduce randomness to these 10,000 simulated outcomes. We then count the
fraction of these simulated economies that yield results like those found in U.S. data. That is, we count how
many simulated economies had low (high) risk aversion season equity returns that were no higher (lower) than
the sample April–September (October–March) equity return of 1.149% (6.284%) and low (high) risk aversion
season risk-free returns that were no lower (higher) than the sample April–September (October–March) risk-free
return of 0.793% (0.772%).
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5% across the seasons, come close to matching the observed values shown in
panel A. The magnitude of risk-free rates in each season, 0.58% and 0.38%,
and the difference of #20 basis points across the seasons, are also a fairly
good match. We perform a formal test of the fit between the model and the
data based on the specification test p-value in the last column, which shows
that we fail to reject the model at conventional levels of significance. In the
remaining cases shown in panel B we explore different values of risk aversion
and EIS across the seasons, and the results show that we fail to reject the
model, andwemanage to capture the primary qualitative features of the data.
We see a large seasonal swing in equity returns (as large as a 5.5% difference
across the seasons), and we observe a small or nonexistent swing in risk-free
returns (as small as a few basis points across the seasons), with the seasonal
patterns in risk-free returns, where evident, typically being offset in timing
relative to equity returns.
Panel C contains a representative set of the best-performing results for the

Mehra and Prescott calibration, where we allow risk aversion to vary season-
ally, but we restrict EIS to be constant across the seasons. That is, each
(!SS,  SS) spring/summer pair has a corresponding fall/winter (!FW ,  FW )
pair with !FW ¼ !SS+!! and  FW ¼  SS. The model generates moderate
seasonal changes in risky returns of 1% to 3% instead of the 5% we seek to
match. The seasonal change in the risk-free return is generally too large,
around 3% to 5% instead of close to zero. And the specification test rejects
the model’s fit with the data in all cases.
Overall, the full set of Table 2 results highlights the importance of

allowing seasonal variation in both EIS and risk aversion. When both are
permitted to vary, the model is capable of generating risky and risk-free re-
turns that match the characteristics of observed data. However, lack of sea-
sonal variation in EIS causes gross failure of the model to match the data. In
Appendix C we show that lack of seasonal variation in risk aversion similarly
leads to model failure.

4.3.2 Calibrating to the 1959–2012 consumption growth data. Analogous
results using the 1959–2012 consumption growth parameters appear in
Table 3. Once again, the moments we seek to match appear in panel A,
both EIS and risk aversion vary seasonally in panel B, and only risk aversion
varies seasonally in panel C. We see in panel B that with seasonally varying
EIS and risk aversion, we obtain the stylized seasonal patterns in returns, with
large seasonal differences in risky returns (around 5% difference), much
smaller seasonal differences in risk-free returns (5 to 16 basis points), and
typically countercyclical seasonal variation in risk-free returns relative to
risky returns. Notice that the seasonal changes in risk aversion required in
Table 3 are generally larger than those that we saw in Table 2. The need for
relatively larger changes in the coefficient of relative risk aversion for the
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1959–2012 calibration arises because of the smaller volatility of consumption
over this period relative to the Mehra and Prescott sample period. This fea-
ture of the 1959–2012 data makes it relatively more difficult to match the
features of returns using plausible values of g and across the seasons. In the
last row of panel B, we present an instance in which the model fails the spe-
cification test. Nevertheless, even in that particular case, the model comes
fairly close to matching the level of returns in both seasons.

Turning to panel C, we see that with seasonal variation in risk aversion
only, the returns are not a good match for the observed data and the

Table 3

Calibration results: Using the 1959–2012 consumption growth parameters (six-month rates of return)

Panel A: Stylized facts we attempt to match

Period Equity return (%) Risk-free return (%)

April–September 1.149 0.793
October–March 6.284 0.772
Seasonal change 5.134 #0.021

Panel B: Calibration results for seasonally varying risk aversion and seasonally varying EIS

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.25 3 April–September 0.8 0.36
16.25 2.98 October–March 5.9 0.28 0.22

1.75 4.5 April–September 0.9 0.16
16.75 4.45 October–March 6.1 0.22 0.13

1.75 5.5 April–September 1.0 0.25
16.75 5.43 October–March 6.0 0.09 0.26

2 5.5 April–September 0.9 0.11
17 5.425 October–March 6.1 0.16 0.19

2 4.5 April–September 1.0 0.23
16 4.455 October–March 5.8 0.13 0.01

Panel C: Calibration results for seasonally varying risk aversion and constant EIS

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.75 2.25 April–September 3.5 2.99
21.75 2.25 October–March 5.5 0.05 <0.001

2 3 April–September 3.4 2.76
22 3 October–March 5.8 0.07 <0.001

2 5 April–September 3.2 2.56
22 5 October–March 6.1 0.10 <0.001

2.5 2.5 April–September 3.0 2.16
11.5 2.5 October–March 4.2 0.28 <0.001

The data in panel A are from Table 1. In panel B we summarize results for which we allow both seasonally
varying risk aversion and seasonally varying EIS, and in panel C we summarize results for which only risk
aversion varies seasonally. We calibrate to consumption growth parameters from the 1959–2012 sample period:
positive autocorrelation of consumption growth (% ¼ 0:638), mean consumption growth is equal to 3.11%, and
standard deviation of growth is equal to 1.71%. The consumption data are seasonally adjusted. Footnote 16
describes the specification test.
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specification tests indicate rejection. The failure of the model comes from an
equity rate of return that varies too little and a risk-free rate that varies too
much relative to observed returns. Variation in EIS succeeds where fixed EIS
fails by reducing all asset returns in the fall/winter and increasing all asset
returns in the spring/summer, thus dampening the risk-free seasonal variation
and amplifying the risky return variation. Again, this highlights the import-
ance of allowing for seasonal variation in both EIS and risk aversion.
Overall, the results in Tables 2 and 3 show there exist combinations of

parameters that generate equity and Treasury returns that match the proper-
ties of observed returns.We now turn to reporting on a full grid search across
a range of values of g and tomake general statements about the existence of
ranges of parameter values that are capable of generating equity andTreasury
returns with properties matching those observed in the data.

4.4 Full grid search over values of the preference parameters
In this section we consider plots of goodness-of-fit measures (i.e., p-values for
the specification tests shown in Tables 2 and 3). These plots provide deeper
intuition for the values of g and  that yield the best match to observed
returns over the 1959–2012 period and provide insight into the sensitivity
of the match to the values of g and  . We consider a broad set of values
for seasonally varying g and seasonally varying . Results for theMehra and
Prescott calibration period appear in Figure 2, and those for the 1959–2012
calibration period appear in Figure 3. The higher the p-value on the y-axis
(labeled “Fit”), the better the exercise succeeds in matching actual returns.
A “Fit” value of zero, the lowest possible value on the scale of the y-axis,
would correspond to a very poor fit, with the data rejecting the model very
strongly. Terminating the top of the vertical scale at 0.10 is consistent with the
fact that we do not typically reject a model based on standard levels of sig-
nificance when we observe p-values of 10% or more. (Results are very similar
based on either a 5% or 10% level of significance.) The values plotted on the
horizontal and depth axes are the values of  and g in the low risk aversion /
high EIS (spring/summer) season, that is,  SS and !SS. For each ( SS, !SS)
pair, the data plotted in the figure indicate the best fit over the range of (! ,
!!) values we explored. The best model fit in Figure 2 is achieved for  SS

values between about one and six, and for !SS values up to about seven. The
best model fit in Figure 3 is roughly similar, though the suitable range for !SS
is more constrained depending on the value of  SS.

4.5 Plausibility of preference parameters
One might reasonably wonder whether the parameter values emerging from
this calibration exercise are plausible. That is, are the values of g and shown
in panel B of Tables 2 and 3 reasonable relative to values documented in
the literature? The EIS values are within standard ranges considered by
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researchers, including Vissing-Jorgensen and Attanasio (2003) and Lettau,
Ludvigson, and Wachter (2008). The coefficient of relative risk aversion
values are well within plausible ranges for the low risk-aversion season, be-
tween 1.25 and 3. In the high risk aversion period, the coefficient of relative
risk aversion rises to about 7 to 8.5 in Table 2 and as high as about 16 to 17 in
Table 3. The highest values we consider are within the range considered by
researchers including Lettau, Ludvigson, and Wachter (2008).

An additional consideration is whether we need to scale the parameter
values to adjust for the possibility that only a fraction of the population
experiences seasonally varying preferences. In response to this potential con-
cern, we highlight the evidence mentioned in Section 1 that most everyone
experiences some degree of seasonal depression and seasonally varying risk

ϕ γ
Figure 2
Best fit based on parameters from the Mehra and Prescott calibration period
We plot goodness-of-fit measures for the case of seasonally varying EIS and seasonally varying risk aversion,
based on consumption growth parameters from the Mehra and Prescott calibration period, with seasonally
adjusted consumption data. The values on the horizontal and depth axes are g and  in the low risk aversion /
high EIS (spring/summer) season, that is, !SS and SS . The values on the vertical axis are the p-values described
in footnote 16.

ϕ γ
Figure 3
Best fit based on parameters from the 1959–2012 calibration period
We plot goodness-of-fit measures for the case of seasonally varying EIS and seasonally varying risk aversion,
based on consumption growth parameters from the 1959–2012 calibration period, with seasonally adjusted con-
sumptiondata.Thevalueson thehorizontal anddepthaxes areg and in the lowriskaversion /highEIS (spring/
summer) season, that is, !SS and  SS . The values on the vertical axis are the p-values described in footnote 16.
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preferences. That is, while people who suffer from severe seasonal depression
experience the most dramatic seasonal changes in mood and risk preferences,
even healthy individuals experience milder albeit marked changes.
Nonetheless, even considering for a moment the counterfactual case in
which only a small fraction of the population experienced seasonal changes
in risk preferences, it would be the marginal trader influencing prices when
risk preferences would be changing seasonally, and so it would not be appro-
priate to rescale parameters even under those extreme circumstances.

5. Consumption Seasonality

Now we consider whether observed seasonal patterns in equity and Treasury
returns arise simply as a consequence of deterministically and seasonally
varying consumption growth (see Miron 1986; Ferson and Harvey 1992;
and Piazzesi 2001). Once again, following Mehra and Prescott, we assume
a two-stateMarkovworld, but we now allow the consumption growth rate to
have a different mean and variance across seasons, as is evident in the sea-
sonally unadjusted consumption data. TheMarkov transitionmatrix remains
the same, %ði, iÞ ¼ 0:638 (based on the 1959–2012 calibration period), but
now the growth rate depends on both the season and the state. In the sea-
sonally unadjusted consumption data, consumption has a lower growth rate
and lower variance in the fall/winter season than in the spring/summer
season, and we replicate this feature of the data in our calibration exercise.
Later, we report specific values of the growth rate by season and by state.
Let us define the consumption growthmean and standard deviation values

in the high risk aversion / lowEIS season as f'FW , (FW g and the consumption
growth mean and standard deviation values in the low risk aversion / high
EIS season as f'SS, (SSg. Further, the consumption growth rate realized in
the high risk aversion / low EIS season is gFW and the consumption growth
rate realized in the low risk aversion / high EIS season is gSS. Modifying
Equation (3) to incorporate the state-dependent consumption growth rates
then yields the following system of equations for price-dividend ratios:

ðwFW
i Þ"FW ¼ #"FW

X2

j¼1

%ði, jÞg1#!FW
j, FW 1+wSS

j

% &"SS ð1#!FW Þ
ð1#!SS Þ , ð11Þ

ðwSS
i Þ"SS ¼ #"SS

X2

j¼1

%ði, jÞg1#!SS
j, SS 1+wFW

j

% &"FW ð1#!SS Þ
ð1#!FW Þ

: ð12Þ

Here, wk
i has the interpretation of price-dividend ratios when the preference

parameters are !k and "k and the current state of consumption growth is
i ¼ 1, 2, k ¼ FW , SS indexing the different sets of preference parameters
over the fall/winter and spring/summer seasons, and % is the Markov state-
transition probability matrix.
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In the case of a two-state Markov world and two sets of preference par-
ameters, it follows from Equation (6) that the one-period bond price satisfies
the following system of equations:

BFW
i ¼ #"FW ðwFW

i Þ1#"FW
X2

j¼1

%ði, jÞg#!FW
j, FW 1+wSS

j

% &"SS ð1#!FW Þ
ð1#!SS Þ

#1
, ð13Þ

BSS
i ¼ #"SS ðwSS

i Þ1#"SS
X2

j¼1

%ði, jÞg#!SS
j, SS 1+wFW

j

% &"FW ð1#!SS Þ
ð1#!FW Þ #1

: ð14Þ

In Table 4, we provide annualized average growth rates and volatility for
the seasonally unadjusted consumption data, estimated over 1959–2004 and
over subperiods, covering the first and last halves of the sample.17,18 We find
that the estimates (especially the means) are very stable across the full sample
and the subperiods, and the seasonality across periods is very robust.
Specifically, the consumption growth rate and its volatility are always
lower in the October–March season.

We proceed now to the calibration exercise based on the adapted Epstein
and Zin model. Let us consider first the case with time-invariant preferences,
f!FW , "FW g ¼ f!SS, "SSg. Searching over a wide range of parameter values
(identical to those described in Section 3), we find without exception that the
model delivers lower equity returns in the October–March season than in the
April–September season, which is at odds with the observed return pattern
over these seasons. Themodel also delivers, virtuallywithout exception, lower
bond returns in the April–September season. Panel B of Table 5 contains
a representative set of the best-performing results for the time-invariant pref-
erence calibration exercise. In sum, the exercise yields results that are strongly
inconsistent with observed data, yielding strong rejections of the model and
leading us to conclude that seasonality in consumption growth does not ex-
plain the observed seasonal patterns in returns.

It is interesting to consider which degree of seasonal variation in consump-
tion growth could possiblymatch the seasonal return patterns in amodel with
constant preference parameters. Unfortunately, even allowing large seasonal
swings in consumption growth and volatility we cannot easily match the
return data; the specification test p-values indicate that the data reject all
models with the exception of models embedding counterfactually large sea-
sonal changes in both the mean and volatility of consumption. For instance,
we must push volatility of consumption to 8% (annualized) in the fall/winter

17 Our seasonally unadjusted consumption data is the sum of nondurables and services: Variables B004RU1 and
B005RU1 from Table 8.1, Bureau of Economic Analysis, 1947:1-2004:4. (BEA has not updated this series
recently, due to budget cutbacks.)

18 Wedeflate consumptionwith the consumer price index for all urban consumers, all items, series IDCPIAUCNS,
U.S. Department of Labor: Bureau of Labor Statistics, using the CPI at the end of the quarter used as the
deflator.
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season (in contrast to the actual value of 1.3% in the data) and consumption
growth to 19% (in contrast to the actual value of 2.4%) to achieve amatch to
the return data that is not rejected. These parameters generate an equity
return of 3.4% in the spring/summer and 9.2% in the fall/winter and a
risk-free return of 1.5% in the spring/summer and 1.3% in the fall/
winter.19 Furthermore, to produce these results, we also need counterfactual
seasonal variation in consumption growth; specifically, mean growth and
volatility of growth would need to rise in the fall/winter, whereas we observe
the opposite seasonal pattern in the data.
We turn next to allowing for both seasonality in consumption growth and

seasonality in preferences. That is, we allow g and " to change with the
semiannual seasons, and we also allow for consumption growth rates to
have a lower mean and a lower variance in the fall/winter season, matched
with observed data. In this calibration exercise, we find we are able to match
the direction and, to a remarkable extent, the magnitude of changes in risky
and risk-free returns. Representative best-performing results are presented in
panel C of Table 5.
In Figure 4 we plot the goodness-of-fit measure for the case of seasonally

varying EIS, seasonally varying risk aversion, and seasonally varying con-
sumption growth and risk. The best fit is achieved for g values up to about
two and for  values greater than about three.
In sum, we find that when allowing for seasonality in consumption growth

alone we are unable to explain the observed seasonal patterns in risky and
risk-free returns. To capture the seasonal variability of returns, we must also
allow for seasonally varying risk aversion and EIS.

Table 4

Annualized average consumption growth rates and volatility for seasonally unadjusted consumption data

Period Mean consumption
growth (')

Volatility of consumption
growth (()

Panel A: 1959–2004
April–September 4.0% 3.1%
October–March 2.4% 1.3%

Panel B: 1959–1983
April–September 4.3% 4.0%
October–March 2.4% 1.6%

Panel C: 1984–2004
April–September 3.8% 1.7%
October–March 2.4% 0.8%

We report estimates of the mean consumption growth rate and the volatility of consumption growth for the
April–September and October–March seasons over the 1959–2004 sample period and subperiods consisting of
the first and last halves of the sample. The consumption data are seasonally unadjusted. The source of the
consumption data is described in footnote 17, and the deflation method is described in footnote 18.

19 This particular result was generated with ! ¼ 1:25 and  ¼ 1:5. We explored values of g and  in the range of
1.1 to 10 and from 1.25 to 6, respectively, with similar results.
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6. Including Pre-1959 Return Data

As a supplement to our primary analysis of return data and stylized facts on
seasonality, we now discuss extension of the sample period to include returns
data prior to 1959, as far back as 1926, which is the earliest year for which
CRSP returns data are available. Note that analysis using samples that in-
clude pre-1959 data rely on the one-month Treasury-bill rolled over to form
a six-month return (analogous to that shown in the last column of Table 1
for the 1959–2012 sample) as a stand-in for the six-month Treasury-bill for
observations prior to 1959.

Table 5

Calibration results incorporating seasonal consumption growth: Using seasonally unadjusted consumption
growth parameters (six-month rates of return)

Panel A: Stylized facts we attempt to match

Period Equity return (%) Risk-free return (%)

April–September 1.149 0.793
October–March 6.284 0.772
Seasonal change 5.134 #0.021

Panel B: Constant g and  

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.25 5.5 April–September 2.5 1.03
1.25 5.5 October–March 2.0 1.46 <0.001

1.75 4 April–September 2.9 0.78
1.75 4 October–March 2.2 1.43 <0.001

1.75 6 April–September 2.8 0.66
1.75 6 October–March 2.1 1.32 <0.001

2.5 5.5 April–September 3.2 0.18
2.5 5.5 October–March 2.3 1.16 <0.001

Panel C: Seasonally varying g and  

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.01 5 April–September 1.2 0.11
23.01 4.94 October–March 6.5 0.23 0.06

1.01 5 April–September 1.4 0.34
26.01 4.95 October–March 6.5 0.07 0.15

1.05 5 April–September 1.4 0.32
28.05 4.95 October–March 6.6 0.11 0.31

1.25 4 April–September 1.6 0.30
31.25 3.97 October–March 6.6 0.15 0.13

The data in panel A are fromTable 1.Results in panels B andCare fromamodel basedon consumption growth
parameters from the 1959–2004 sample period: seasonal consumption growth parameters of
f'FW , (FW g¼ {2.4%, 1.3%} and f'SS , (SSg ¼{4.0%, 3.1%}, calculated based on seasonally unadjusted con-
sumption data. We also make use of the 1959–2012 seasonally adjusted consumption data to calculate the
Markov growth transition matrix: positive autocorrelation of annual consumption growth (% ¼ 0:67). In
panel B we summarize results for which both EIS and risk aversion are constant, and in panel C we summarize
results for which we allow both seasonally varying risk aversion and seasonally varying EIS.
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Mehra and Prescott (1985) report substantial subsample variability in the
equity premiumover periods prior to 1959, with an equity premiumnear 15%
during 1919–1928, 0.18% during 1929–1938, 9% during 1939–1948, and
above 18% during 1949–1958 (see their Table 1). The 1920s and 1930s
were, of course, a remarkable period of time, encompassing the bubble of
the late 1920s and the Great Depression of the 1930s. Consistent with this
volatility, we find the seasonal change in the equity premium across the fall/
winter versus the spring/summer is also very unstable over the 1920s and 30s.
To see this, consider panel A of Figure 5. The vertical axis is the difference
between the fall/winter equity premium and the spring/summer equity pre-
mium (where the equity premium is the difference between the value-weighted
risky returns and risk-free returns). Each asterisk in the plot represents the
seasonal change in the equity premium estimated over a five-year window.
The farthest-left asterisk represents the seasonal change in the equity pre-
mium for 1926–1930, the next asterisk moves the window by a year, and so
on to the farthest-right asterisk, which represents the seasonal change in the
equity premium for 1945–1949. The influence of the Great Depression is
evident over most of the sample period shown in panel A.
In panel B, we consider longer windows, with each rolling window no less

than 20 years in length and with the windows expanding to a maximum of 54
years in length (matching the length of the 1959–2012 sample period we
consider in the primary analysis).We omit data prior to 1941, acknowledging
that theGreatDepression was an unsual period of history during which there
is little evidence of the type of seasonal variation in the equity premium that
we find otherwise. In addition to plotting the seasonal change in the equity
premium (again shown using asterisks), we now provide the lower bounds of

ϕ γ
Figure 4
Best fit for seasonally varying consumption growth and risk case, based on parameters from the 1959–2012 cali-
bration period
We plot goodness-of-fit measures for the case with seasonally varying consumption growth and risk, and
seasonally varying EIS and risk aversion, based on consumption growth parameters from the 1959–2012 cali-
bration period, with % based on seasonally adjusted consumption data and all other consumption growth
characteristics based on seasonally unadjusted consumption data. The values on the horizontal and depth
axes are g and  in the low risk aversion / high EIS (spring/summer) season, that is, !SS and  SS . The
values on the vertical axis are the p-values described in footnote 16.
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90% and 95% confidence intervals, allowing us to test whether the seasonal
changes arising from any rolling window is significantly greater than zero.
The shaded area highlights data points estimated with fewer than 54 years of
data and hence estimated with less information than we use in our primary
analysis. Based on the 90% confidence bound, we find in the unshaded
sample that the fall/winter equity premium is significantly greater than the

Panel A: VW returns, ten semi-annual periods in
each rolling window, 1926–1949

Sub-Sample with Fewer
Than 54 Years of Data

Sub-Sample with Fewer
Than 54 Years of Data

Sub-Sample with Fewer
Than 54 Years of Data

Panel B: VW returns, rolling windows, 1941–2012

Panel C: EW returns, rolling windows, 1941–2012 Panel D: VW returns, rolling windows, 1941–
2012, semiannual periods redefined as May–Oct.
and Nov–Apr.

Figure 5
Rolling window estimation
In all panels, asterisks depict the seasonal difference in average risky returnsminus average risk-free returns, that
is, the equity premium in the fall/winter minus the equity premium in the spring/summer. In panels A, B, andD,
the risky return is the value-weighted equity return, and in panel C the risky return is the equal-weighted equity
return. In panel A, each rolling window used to calculate the average returns is ten semiannual periods (five
years), with the first rolling window being 1926–1930 and the last rolling window being 1946–1949. In panels B,
C, and D, each rolling window is no less than 20 years and no more than 54 years. 1960 has the minimum
number of years of data, 20, and the number of years of data used increases each year beyond 1960 until 1993
when we achieve the first window with the maximum number of years, 54 years, which continues to be the
window length until the end of the sample. That is, the first rolling window encompasses 1941–1960, the second
1941–1961, and so on until 1994 when the window encompasses 1942–1994. The last data point plotted uses the
window 1959–2012. The shaded areas in panels B, C, and D highlight data points estimated with fewer than 54
years of data. In panels A, B, and C, the semiannual periods are April–September andOctober–March. In panel
D, the semiannual periods are May–October and November–April. Confidence intervals are based on
MacKinnon and White’s (1985) bootstrap heteroscedasticity-consistent standard errors.
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spring/summer equity premium with the exception of a brief period during
the recent financial crisis. There are some additional exceptions based on
the 95% confidence interval, but again the seasonal difference is broadly
significant. The shaded area gives us some sense of the stability of the seasonal
variation in the early part of the sample using shorter subsamples to esti-
mate the seasonal variation in the equity premium. Although the confidence
intervals are wider, as we might expect using shorter sample periods for esti-
mation, the mean effect is fairly stable, mostly taking on values in the range
of 3% to 6%.
Panel C is analogous to panel B, except it uses equal-weighted data for the

risky returns, placing relatively more weight on small firms. With this modi-
fication, we find the seasonal change in the equity premium is close to every-
where significant based on the 90% confidence interval, and it is typically
significant based on the 95% bound. Panel D is also analogous to panel B,
and uses value-weighted risky returns, but the semiannual periods are rede-
fined as May to October for spring/summer and November to April for fall/
winter.With this shifted timing for the seasons, we find statistically significant
seasonal changes in the equity premium for all rollingwindows formost of the
estimation windows we investigate, apart from the earliest windows, which
use fewer observations to estimate the effect.
We provide the plot shown in panel D to highlight the fact that, of course,

our findings are somewhat sensitive to the start and end dates of the six-
month seasons. Given that research in psychology suggests the peak onset
of seasonal depression is roughly in October, the ideal starting point for the
fall/winter period may be close to October 15, but in absence of daily or
weekly data, we must choose either October 1 or November 1 for the start
of a period. For our primary analysis, we start the fall/winter period in
October 1, due to its convenience in aligning with the reporting data for
many government statistics, and consistent with the timing convention used
in other studies of return seasonality related to depression such as Kamstra,
Kramer, and Levi (forthcoming).
Overall, these data suggest fairly stable seasonality in the equity premium

over the post-Depression era. Similar results obtain for seasonality in equity
and Treasury returns, although consistent with Table 1, virtually all the sea-
sonality comes from the equity return.

7. Conclusions

Past research posits that seasonal variation in investor mood impacts asset
returns through the influence of depression on risk preferences. Anymodel of
asset returns used to bridge the empirical-conceptual gap must be ultimately
based on realistic preferences for consumption over time or preferences for
risk. We explore the ability of a representative agent asset pricing model to
match a remarkable empirical regularity, namely, that realized equity returns
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vary conditionally across the seasons as much as 12% (annualized) and that
average U.S. Treasury returns may vary countercyclically relative to equity
returns, albeit on a much smaller scale.

On average, observed equity returns are higher and bond returns are lower
in the fall/winter season (the time of year when many investors experience
seasonal depression, lower EIS, and higher risk aversion). Further, the vari-
ation in bond returns across the seasons is much smaller than that in equity
returns. In our model calibrated to consumption growth data, both EIS and
risk aversion must vary seasonally in order to generate returns that match
these distinct seasonal characteristics of risky and risk-free returns. We show
that allowing only one or the other of EIS and risk aversion to vary seasonally
is insufficient. Both must vary or the model generates counterfactual returns
patterns and is strongly rejected by the data.

Our main analysis is based on calibrating to seasonally adjusted consump-
tion data, but we also consider amodel calibrated to unadjusted consumption
data. Without seasonally varying EIS and risk aversion, the returns that
emerge from this model exhibit characteristics grossly at odds with observed
data, with too little seasonal variation in risky returns and wrongly signed
movements in risky and risk-free returns across the seasons. Incorporating
seasonally varying preferences in that model yields returns that closely match
observed data.

Relative to prior work on the influence of seasonally varying preferences in
asset pricing, our findings with respect to EIS are novel. Specifically, we find
that seasonal changes in agents’ willingness to postpone consumption play an
important and previously overlooked role in explaining seasonal return dy-
namics. Further, the changes in the risk preferences required to match the
observed seasonal changes in returns are such that the required seasonal
change in EIS is very small relative to the required seasonal change in risk
aversion. Changes in EIS as little as 0.08 generally suffice. In comparison, the
change in risk aversion across the seasons must be around six or seven in one
of our main calibration exercises in order to match the characteristics of
observed returns.

Appendix

A. Recursive Utility with Seasonal Depression

Let us consider recursive utility with time-varying risk aversion !t and constant %:

Ut ¼ c
ð1#!tÞ="t
t +#ðEtU

1#!t
t+1 Þ1="t

h i"t=ð1#!tÞ
,

where  , defined through "t ¼ ð1# !tÞ=ð1# 1= Þ, is the elasticity of intertemporal substitution.
When "t ¼ 1 we get the standard intertemporally additive expected utility.

The utility maximization problem is

JtðWt, xtÞ ¼ max
ct , $t

c
ð1#!tÞ="t
t +#ðEtJ

1#!t
t+1 Þ1="t

h i"t=ð1#!tÞ
,
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subject to the constraint

Wt+1 ¼ ðWt # ctÞ$tð1+Rt+1Þ,

where xt is the vector of state variables and $t is the vector of portfolio weights.
It is readily seen that the recursive utility is homothetic so that JtðWt, xtÞ ¼ ftðxtÞWt. The

original utility maximization problem can be written as

ftðxtÞWt ¼ max
ct , $t

c
ð1#!tÞ="t
t +# Et ð ft+1ðxt+1ÞðWt # ctÞ$tð1+Rt+1ÞÞ1#!t

) *! "1="th i"t=ð1#!tÞ

¼ max
ct , $t

c
ð1#!tÞ="t
t +#ðWt # ctÞð1#!tÞ="t Et ð ft+1ðxt+1Þ$tð1+Rt+1ÞÞ1#!t

) *! "1="th i"t=ð1#!tÞ
:

The first-order condition for ct is then

c
ð1#!tÞ="t#1
t ¼ #ðWt # ctÞð1#!tÞ="t#1 Et ð ft+1ðxt+1Þ$tð1+Rt+1ÞÞ1#!t

) *! "1="t
:

Homogeneity suggests that ct ¼ CtðxtÞWt. Substitution into the utility maximization problem
yields

ftðxtÞð1#!tÞ="t ¼ CtðxtÞð1#!tÞ="t+#ð1# CtðxtÞÞð1#!tÞ="t Et ð ft+1ðxt+1Þ$tð1+Rt+1ÞÞ1#!t
) *! "1="t

:

The first-order condition for ct can be written as

CtðxtÞð1#!tÞ="t#1 ¼ #ð1# CtðxtÞÞð1#!tÞ="t#1 Et ð ft+1ðxt+1Þ$tð1+Rt+1ÞÞ1#!t
) *! "1="t

:

Combining the two equations yields

ftðxtÞ ¼ CtðxtÞð1#!t#"tÞ=ð1#!tÞ,

ft+1ðxt+1Þ ¼ Ct+1ðxt+1Þð1#!t+1#"t+1Þ=ð1#!t+1Þ,

and

CtðxtÞ1#!t#"t ¼ #"t ð1# CtðxtÞÞ1#!t#"t Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ1#!t
) *

:

For the optimal portfolio choice, we examine

max
$t

Et ð ft+1ðxt+1Þ$tð1+Rt+1ÞÞ1#!t
) *

:

The first-order condition is simply

0 ¼ Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ#!t ðRi, t+1 # rtÞ
) *

,

which implies

Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ#!t ð1+Ri, t+1Þ,
) *

¼ Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ#!t ð1+rtÞ
) *

and

Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ1#!t
) *

¼ Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ#!t ð1+rtÞ
) *

:

Then

CtðxtÞ1#!t#"t ¼ #"t ð1# CtðxtÞÞ1#!t#"t Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ#!t ð1+rtÞ
) *

and

CtðxtÞ1#!t#"t ¼ #"t ð1# CtðxtÞÞ1#!t#"t Et ft+1ðxt+1Þ1#!t ð$tð1+Rt+1ÞÞ#!t ð1+Ri, t+1Þ
) *

:

If there is only one risky stock, then

CtðxtÞ1#!t#"t ¼ #"t ð1# CtðxtÞÞ1#!t#"t Et ft+1ðxt+1Þ1#!t ð1+Rt+1Þ1#!t
) *

:
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A.1 The Market Portfolio
In equilibrium, the representative agent holds the market portfolio. The equation derived above
can be written as

1 ¼ #"t
1

CtðxtÞ
# 1

' (1#!t#"t

Et ft+1ðxt+1Þ1#!t PM, t+1+dt+1
PM, t

' (1#!t
" #

,

where PM, t is the price of the market portfolio. Homogeneity suggests that PM, t ¼ wðxtÞdt.
Now note that in equilibrium ct ¼ dt, and consumer wealth is equal to the stock price be-
cause there is only one share of the stock and the consumer does not have labor income.
Thus,Wt ¼ PM, t+dt and CtðxtÞ ¼ ct=Wt ¼ 1=ðwtðxtÞ+1Þ. Substituting into the above equation
yields

1 ¼ #"t
PM, t+dt

dt
# 1

' (1#!t#"t

Et
dt+1

PM, t+1+dt+1

' (ð1#!t+1#"t+1 Þ
ð1#!t+1 Þ

 !ð1#!tÞ
PM, t+1+dt+1

PM, t

' (1#!t
2

4

3

5,

where we have used the expression for ft+1 derived earlier. Then

1 ¼ #"t wtðxtÞ1#!t#"t Et ðwt+1ðxt+1Þ+1Þ
ð!t+1+"t+1#1Þð1#!t Þ

ð1#!t+1 Þ
ðwt+1ðxt+1Þ+1Þgt+1

wtðxtÞ

' (1#!t
" #

:

Simplifying yields

wtðxtÞ"t ¼ #"t Et g1#!t
t+1 ð1+wt+1ðxt+1ÞÞ

"t+1 ð1#!t Þ
ð1#!t+1 Þ

# $
: ð15Þ

Let us assume a finite-state Markov world. Now the price dividend ratio, wk
i , is indexed by

i ¼ 1, 2 for state and by k ¼ FW , SS for the fall/winter and spring/summer seasons. Assuming
there are only two states, Equation (3) yields the following system of equations:

ðwFW
i Þ"FW ¼ #"FW

Xn

j¼1

%ði, jÞg1#!FW
j ð1+wSS

j Þ
"SS ð1#!FW Þ

ð1#!SS Þ , ð16Þ

ðwSS
i Þ"SS ¼ #"SS

Xn

j¼1

%ði, jÞg1#!SS
j ð1+wFW

j Þ
"FW ð1#!SS Þ
ð1#!FW Þ : ð17Þ

A.2 The Bond Price
More generally, the price of any stock j should satisfy

1 ¼ #"t wtðxtÞ1#"t Et ðwt+1ðxt+1Þ+1Þ
ð!t+1+"t+1#1Þð1#!t Þ

ð1#!t+1 Þ ðwt+1ðxt+1Þ+1Þgt+1ð Þ#!t Pj, t+1+dj, t+1
Pj, t

' (# $
:

Thus,

Pj, t ¼ #"t wtðxtÞ1#"t Et g#!t
t+1 ðwt+1ðxt+1Þ+1Þ

"t+1 ð1#!t Þ
ð1#!t+1 Þ

#1
Pj, t+1+dj, t+1
! "# $

: ð18Þ

It follows from Equation (18) that the one period bond price satisfies

Bt ¼ #"t wtðxtÞ1#"t Et g#!t
t+1 ðwt+1ðxt+1Þ+1Þ

"t+1 ð1#!t Þ
ð1#!t+1 Þ

#1
# $

: ð19Þ
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Let us assume a two-stateMarkov world and that there are only two levels of risk aversion. Then
Equation (19) yields the following system of equations for states i¼ 1, 2:

BFW
i ¼ #"FW ðwFW

i Þ1#"FW
Xn

j¼1

%ði, jÞg#!H
j ð1+wSS

j Þ
"SS ð1#!FW Þ

ð1#!SS Þ #1
, for odd periods, t ¼ 1, 3, . . .

ð20Þ

BSS
i ¼ #"SS ðwSS

i Þ1#"SS
Xn

j¼1

%ði, jÞg#!SS
j ð1+wFW

j Þ
"FW ð1#!SS Þ
ð1#!FW Þ #1

, for even periods, t ¼ 2, 4, . . .

ð21Þ

Having solved for wk
i from Equations (16) and (17), we can now solve for the bond price and

hence the risk-free rate. It is seen from these expressions that risk-free rates are stationary when
the representative agent has Epstein and Zin (1989) utility.

B. Sensitivity of Returns to EIS

The bond price is given by

BtðxtÞ ¼ Et #"t g#!t
t+1wtðxtÞ1#"t ð1+wt+1ðxt+1ÞÞ

"t+1 ð1#!t Þ
1#!t+1

#1
# $

:

Thus,

dBtðxtÞ
d"t

¼ Et #"t g#!t
t+1wtðxtÞ1#"t ð1+wt+1ðxt+1ÞÞ

"t+1 ð1#!t Þ
1#!t+1

#1
lnð1+wt+1ðxt+1ÞÞ

# $
1# !t
1# !t+1

:

Then

dRf , t

d t+1
¼ 1

ð1+rtÞ2
Et #"t g#!t

t+1wtðxtÞ1#"t ð1+wt+1ðxt+1ÞÞ
"t+1 ð1#!t Þ
1#!t+1

#1
lnð1+wt+1ðxt+1ÞÞ

# $
1# !t

ð t+1 # 1Þ2
:

In the special case of iid growth and no seasonal variation in preferences, the risk-free rate is

1+Rf , t ¼
1

#"E g#!½ &w1#"ð1+wÞ"#1
¼ 1

#E g#!½ & E g1#!
) *! " 1

1#!

h i1= #!

:

Then

dRf , t

d 
¼ #1

 2
ln E g1#!

) *! " 1
1#!

h i
' 1

#E g#!½ &
E g1#!
) *! " 1

1#!

h i1= #!

:

Clearly the derivative also depends on the sign of ln E g1#!
) *! " 1

1#!

h i
.

When there is no seasonal variation in preferences and consumption growth is iid, the equity
premium can be written as

E½RM, t& # Rf , t ¼ E½g&##1 E g1#!
) *! " 1

1#!

h i1= #1

# 1

#E g#!½ & E g1#!
) *! " 1

1#!

h i1= #!

¼ ##1 E g1#!
) *! " 1

1#!

h i1= #1

E½g& #
E g1#!
) *

E g#!½ &

+ ,

¼ ##1 E g1#!
) *! " 1

1#!

h i1= #1cov g, # g#!ð Þ
E½g#! & :

Then

dE½RM, t& # Rf , t

d 
¼ #1

 2
ln E g1#!

) *! " 1
1#!

h i
' ##1 E g1#!

) *! " 1
1#!

h i1= #1cov g, # g#!ð Þ
E½g#! & :
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Table A1

Calibration results for seasonally varying EIS and constant risk aversion: Using Mehra and Prescott
consumption growth parameters (six-month rates of return)

Panel A: Stylized facts we attempt to match

Period Equity return (%) Risk-free return (%)

April–September 1.149 0.793
October–March 6.284 0.772
Seasonal change 5.134 #0.021

Panel B: Calibration results for seasonally varying EIS and constant risk aversion

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.5 4 April–September 2.3 0.70
1.5 3.999 October–March 2.4 0.78 <0.001

2 3 April–September 2.5 0.37
2 2.9999 October–March 2.5 0.38 <0.001

1.5 1.25 April–September 2.4 0.59
1.5 1.248 October–March 6.9 5.00 <0.001

2 1.25 April–September 2.7 0.36
2 1.247 October–March 9.0 6.49 <0.001

2.5 1.5 April–September 3.0 0.23
2.5 1.4999 October–March 3.1 0.33 <0.001

The data in panel A are from Table 1. In panel B we summarize results for which we do not allow season-
ally varying risk aversion but do allow seasonally varying EIS and forwhichwe calibrate to consumption growth
parameters from theMehra and Prescott (1985) sample period: negative autocorrelation of consumption growth
(% ¼ 0:43), mean consumption growth is equal to 1.80%, and standard deviation of growth is equal to 3.60%.

Table A2

Calibration results for seasonally varying EIS and constant risk aversion: Using the 1959–2012 consump-
tion growth parameters (six-month rates of return)

Panel A: Stylized facts we attempt to match

Period Equity return (%) Risk-free return (%)

April–September 1.149 0.793
October–March 6.284 0.772
Seasonal change 5.134 #0.021

Panel B: Calibration results for seasonally varying EIS and constant risk aversion

g  Period Equity
return (%)

Risk-free
return (%)

Specification
test p-value

1.5 3.5 April–September 2.1 1.54
1.5 3.498 October–March 2.4 1.78 <0.001

4 3.5 April–September 2.6 1.00
4 3.499 October–March 2.7 1.11 <0.001

5 2.5 April–September 2.7 0.87
5 2.499 October–March 3.0 1.11 <0.001

5 3.5 April–September 2.5 0.52
5 3.494 October–March 3.1 1.15 <0.001

7 1.25 April–September 3.0 0.90
7 1.2499 October–March 3.3 1.18 <0.001

The data in panel A are from Table 1. In panel B we summarize results for which we do not allow seasonally
varying risk aversion but do allow seasonally varyingEIS.We calibrate to consumption growth parameters from
the 1959–2012 sample period: positive autocorrelation of consumption growth (% ¼ 0:638), mean consumption
growth is equal to 3.11%, and standard deviation of growth is equal to 1.71%.
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Clearly the derivative depends on the sign of ln E g1#!
) *! " 1

1#!

h i
.

In themore general case with seasonally varying preferences and non-iid consumption growth,
the derivative is analytically intractable. We can however solve for the derivative numerically
using Equations (5) and (6). See Figure 1.

C. Calibrations with Seasonally Varying EIS and Constant
Risk Aversion

To supplement our primary analysis, we now consider the case in which EIS varies seasonally and
risk aversion remains constant across the seasons. As shown in our analysis with constant EIS
and seasonally varying risk aversion, we find models with constant risk aversion and seasonally
varying EIS are not able to match the features of observed risky and safe asset returns.

Each (!SS ,  SS) spring/summer pair has a corresponding fall/winter (!FW ,  FW ) pair with
!FW ¼ !SS and FW ¼  SS+! , where! < 0. As before, we search over a very large grid.We
provide a representative set of the best-performing results based on the Mehra and Prescott
consumption parameter values in Table A1 and based on the 1959–2012 values in Table A2.
Panel A in each table contains the stylized returns, and panel B contains themodel results. In both
tables, we see that when  drops in the fall/winter season, the expected returns generally rise for
both the risky asset and the risk-free asset. That is, the prices of both risky and risk-free assets
drop lower than they would otherwise be for all assets to be held in equilibrium, and with the
relatively lower prices come relatively higher expected returns for both asset classes. Overall, when
we allow EIS to vary seasonally and hold risk aversion constant, equity and risk-free returns fail
to demonstrate the empirically observed magnitudes and signs of returns across the seasons, with
risk-free returns varying across the seasons as much as risky returns in many cases. The specifi-
cation test p-values indicate rejection for all of the shown cases, and this is representative of the
findings when we search over the full grid of parameters.
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